某市一次全市高中男生身高统计调查数据显示:全市100?000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172cm以上(含172cm)的人数;
(Ⅲ)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ-N(μ+?2).则
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.
网友回答
解:(Ⅰ)由直方图,经过计算该校高三年级男生平均身高为
(162×+166×+170×+174×+178×+182×)×4=168.72,
高于全市的平均值168(或者:经过计算该校高三年级男生平均身高为168.72,比较接近全市的平均值168).…(4分)
(Ⅱ)由频率分布直方图知,后三组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172?cm以上(含172?cm)的人数为10人.…(6分)
(Ⅲ)∵P(168-3×4<ξ≤168+3×4)=0.9974,
∴P(ξ≥180)==0.0013,0.0013×100?000=130.
所以,全市前130名的身高在180?cm以上,这50人中180?cm以上的有2人.
随机变量ξ可取0,1,2,于是
P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,
∴Eξ=0×+1×+2×=.…(12分)
解析分析:(I)高三男生的平均身高用组中值×频率,即可得到结论;(II)首先理解频数分布直方图横纵轴表示的意义,横轴表示身高,纵轴表示频数,即:每组中包含个体的个数.我们可以依据频数分布直方图,了解数据的分布情况,知道每段所占的比例,从而求出求这50名男生身高在172cm以上(含172cm)的人数.(III)先根据正态分布的规律求出全市前130名的身高在180?cm以上,这50人中180?cm以上的有2人,确定ξ的可能取值,求出其概率,即可得到ξ的分布列与期望.
点评:此题主要考查了正态分布,考查随机变量的定义及其分布列,并考查了利用分布列求其期望.正确理解频数分布直方图横纵轴表示的意义,由频数分布直方图可以得到什么结论是学习中需要掌握的关键.