已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,则动点P的轨迹方程为________.
网友回答
解析分析:根据椭圆定义可知,所求动点P的轨迹为以F1,F2为焦点的椭圆,再结合余弦定理、基本不等式,即可求出椭圆中的a,b的值.
解答:(1)∵x2-y2=1,∴c=.设|PF1|+|PF2|=2a(常数a>0),2a>2c=2,∴a>由余弦定理有cos∠F1PF2==-1∵|PF1||PF2|≤()2=a2,∴当且仅当|PF1|=|PF2|时,|PF1||PF2|取得最大值a2.此时cos∠F1PF2取得最小值为-1,由题意-1=-,解得a2=3,∴b2=a2-c2=3-2=1∴P点的轨迹方程为.故