已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为A.60°B.90°C.45°D.以

发布时间:2020-07-31 12:39:00

已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为A.60°B.90°C.45°D.以上都不正确

网友回答

B
解析分析:根据本题的条件,E是BB1的中点且AA1=2,AB=BC=1,容易证明∠AEA1=90°,再由长方体的性质容易证明AD⊥平面ABB1A1,从而证明AE⊥平面A1ED1,是一个特殊的线面角.

解答:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD-A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B

点评:本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.
以上问题属网友观点,不代表本站立场,仅供参考!