已知函数y=xf′(x)(x∈R)的图象如右图所示,其中f′(x)是函数f(x)的导函数,下面四个图象中,y=f(x)图象大致为A.B.C.D.

发布时间:2020-08-01 03:30:08

已知函数y=xf′(x)(x∈R)的图象如右图所示,其中f′(x)是函数f(x)的导函数,下面四个图象中,y=f(x)图象大致为A.B.C.D.

网友回答

C

解析分析:根据函数y=xf′(x)的图象,依次判断f(x)在区间(-∞,-1),(-1,0),(0,1),(1,+∞)上的单调性即可.

解答:由函数y=xf′(x)的图象可知:当x<-1时,xf′(x)<0,f′(x)>0,此时f(x)增当-1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.综上所述,故选C.

点评:本题主要考查了函数的单调性与导数的关系,同时考查了分类讨论的思想,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!