过原点O作圆x2+y2-8x=0的弦OA.
(1)求弦OA中点M的轨迹方程;
(2)延长OA到N,使|OA|=|AN|,求N点的轨迹方程.
网友回答
解:(1)设M点坐标为(x,y),那么A点坐标是(2x,2y),
A点坐标满足圆x2+y2-8x=0的方程,
所以 (2x)2+(2y)2-16x=0
所以M 点轨迹方程为? x2+y2-4x=0.
(2)设N点坐标为(x,y),那么A点坐标是(),
A点坐标满足圆x2+y2-8x=0的方程,
得到:()2+()2-4x=0,
N点轨迹方程为:x2+y2-16x=0
解析分析:(1)设出M点坐标为(x,y),求出A点坐标是,利用A点坐标满足圆的方程,代入求解可得弦OA中点M的轨迹方程;(2)类似(1)设出N,通过|OA|=|AN|,求出A的坐标,利用A点坐标满足圆的方程,代入求解可得N点的轨迹方程.
点评:本题是中档题,考查曲线轨迹方程的求法,注意中点坐标的灵活运用,本题是应用相关点法求解的,注意掌握.