如图,在四棱柱ABCD-A1B1C1D1中,DD1⊥面ABCD已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1

发布时间:2020-08-01 03:29:32

如图,在四棱柱ABCD-A1B1C1D1中,DD1⊥面ABCD已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)设E是DC的中点,求证:D1E∥平面A1BD;
(2)求二面角A1-BD-C1的余弦值.
(3)求点C到面A1BD的距离.

网友回答

证明:(1)连接BE,则四边形DABE为正方形,
∴BE=AD=A1D1,且BE∥AD∥A1D1,
∴四边形A1D1EB为平行四边形,∴D1E∥A1B.
∵D1E?平面A1BD,A1B?平面A1BD,∴D1E∥平面A1BD.
解:(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设DA=1,
则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).
∴.
设为平面A1BD的一个法向量,
由得,取z=1,则.
设为平面C1BD的一个法向量,
由得,取z1=1,则..
由于该二面角A1-BD-C1为锐角,所以所求的二面角A1-BD-C1的余弦值为.
(3)∵C(0,2,0),∴.
∴点C到面A1BD的距离.

解析分析:(1)连接BE,由已知中DC=2AD=2AB,AD⊥DC,我们易得四边形DABE为正方形,进而可证得四边形A1D1EB为平行四边形,则D1E∥A1B,由线面平行的判定定理,可得D1E∥平面A1BD;(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设DA=1,求出平面A1BD的一个法向量和平面C1BD的一个法向量,代入向量夹角公式,即可得到二面角A1-BD-C1的余弦值.(3)由(2)中的平面A1BD的一个法向量,代入点到平面距离公式,即可求出点C到面A1BD的距离.

点评:本题考查的知识点是与二面角有关的立体几何综合题,直线与平面平行的判定,点到平面之间的距离,其中(1)的关键是证得D1E∥A1B,(2)、(3)的关键是建立空间坐标系,将二面角问题及点到平面的距离转化为用向量法解答.
以上问题属网友观点,不代表本站立场,仅供参考!