已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是A.2B.3C.D.

发布时间:2020-07-31 12:33:20

已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是A.2B.3C.D.

网友回答

A
解析分析:先确定x=-1为抛物线y2=4x的准线,再由抛物线的定义得到P到l2的距离等于P到抛物线的焦点F(l2,0)的距离,进而转化为在抛物线y2=4x上找一个点P使得P到点F(l2,0)和直线l2的距离之和最小,再由点到线的距离公式可得到距离的最小值.

解答:直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,P到l2的距离等于P到抛物线的焦点F(1,0)的距离,故本题化为在抛物线y2=4x上找一个点P使得P到点F(1,0)和直线l2的距离之和最小,最小值为F(1,0)到直线l2:4x-3y+6=0的距离,即d=,故选A.

点评:本小题考查抛物线的定义、点到直线的距离,考查基础知识的综合应用.圆锥曲线是高考的热点也是难点问题,一定要强化复习.
以上问题属网友观点,不代表本站立场,仅供参考!