已知函数f(x)=ln(2x+1)+e3x(4x2+2x+6),
(1)求的值;
(2)求曲线y=f(x)在点(0,f(0))处的切线方程.
网友回答
解:(1)f(x)=ln(2x+1)+e3x(4x2+2x+6),
∴f(0)=6,+3e3x(4x2+2x+6)+e3x(8x+2)
∴==f′(0)=22
(2)曲线y=f(x)在点(0,f(0))处的切线斜率k=f′(0)=22
∴曲线y=f(x)在点(0,f(0))处的切线方程为y-6=22x即22x-y+6=0
解析分析:(1)由f(x)=ln(2x+1)+e3x(4x2+2x+6),可得f(0)=6,+3e3x(4x2+2x+6)+e3x(8x+2),而==f′(0)代入可求(2)由导数的几何意义可知曲线y=f(x)在点(0,f(0))处的切线斜率k=f′(0),从而可求切线方程
点评:本题主要考查了导数的定义的应用,导数的几何意义:导数在某点的切线的斜率即为改点的导数值的应用,属于基本概念的简单应用.