已知函数f(x)满足下列条件:
①f()=1;
②f(xy)=f(x)+f(y);
③f(x)的值域为[-1,1].
试证:不在f(x)的定义域内.
网友回答
解:假设在f(x)的定义域内.
则f()有意义,且f()∈[-1,1].
又由题设,得f()=f(?)=f()+f()=2?[-1,1]与f()∈[-1,1]矛盾.
故假设不成立,从而不在f(x)的定义域内.
解析分析:本题主要考查利用函数的性质求值和反证法.第一个信息给出了取特值的信息,第二个条件给出了转化的方法,第三个条件给出了否定的依据,在做题中要仔细体会.
点评:(1)用反证法证明命题的一般步骤为:①假设命题的结论不成立,即假设命题结论的反面成立;②从这个假设出发,经过推理论证得出矛盾;③由矛盾判断假设不正确,从而肯定命题的结论正确.(2)常用的正面叙述词语和它的否定词语: