若函数f(x)=x+asin?x在R上递增,则实数a的取值范围为 ________.
网友回答
[-1,1]
解析分析:先对函数f(x)=x+asin?x进行求导,根据原函数是R上的增函数一定有其导函数在R上大于等于0恒成立得到1+acosx≥0,再结合cosx的范围可求出a的范围.
解答:∵f′(x)=1+acosx,∴要使函数f(x)=x+asinx在R上递增,则1+acosx≥0对任意实数x都成立.∵-1≤cosx≤1,①当a>0时-a≤acosx≤a,∴-a≥-1,∴0<a≤1;②当a=0时适合;③当a<0时,a≤acosx≤-a,∴a≥-1,∴-1≤a<0.综上,-1≤a≤1.故