如图,三棱锥P-ABC的顶点P在圆柱曲线O1O上,底面△ABC内接于⊙O的直径,且∠ABC=60°,O1O=AB=4,⊙O1上一点D在平面ABC上的射影E恰为劣弧AC的中点.
(1)设三棱锥P-ABC的体积为,求证:DO⊥平面PAC;
(2)若⊙O上恰有一点F满足DF⊥平面PAC,求二面角D-AC-P的余弦值.
网友回答
解:法一:(1)连接DE,OE,,设OE与AC的交点为G,连接PG,因为三角形ABC内接于圆O,AB为圆O的直径,所以三角形ABC为直角三角形,
又∠ABC=60°,AB=4,又,所以,故,
因为E是劣弧AC的中点,所以,
又因为DE⊥平面ABC,故DE⊥AC,所以AC⊥平面DEOO1,故DO⊥AC.
在矩形DEOO1中,,,
故∠PGO=∠DOO1,
又,故∠PGO+∠DOG=90°,
所以DO⊥PG,
所以DO⊥平面PAC.
(2)由(1)知,AC⊥平面DEOO1,
所以平面DEOO1⊥平面PAC,
因为DF⊥平面PAC,
所以DF?平面DEOO1,且DF⊥PG,
又F在圆O上,故点F即为点E关于点O的对称点,在轴截面内可求得PO=OG=1,
所以.
由AC⊥平面DEOO1,得∠DGP即为二面角D-AC-P的平面角,
在△DGP中,由余弦定理可求得
?法二:(1)在平面ABC中,过点O作AB的垂线,交弧EC于H,
如图建立空间直角坐标系,因为△ABC内接于圆O,AB为圆O的直径,所以△ABC为直角三角形,又∠ABC=60°,AB=4,
故,
所以,
故,
故?
所以?
所以
故AC⊥OD,AP⊥OD,
又AC∩AP=A,
所以DO⊥平面PAC.
(2)设点F的坐标为(x,y,0),
故.
因为DF⊥平面PAC,故DF⊥AC,
所以,
又因为F点在圆O上,所以x2+y2=4解得或(即为点E,舍去),所以,
设平面DAC的法向量,
则有,,即,
取,则.
则,
由图知D-AC-P的二面角为锐角,所以二面角D-AC-P的余弦值为.
解析分析:法一(几何法):(1)连接DE,OE,,设OE与AC的交点为G,连接PG,由题设条件知可先证明DO⊥AC,再证明DO⊥PG,然后由线面垂直的判断定理证明DO⊥平面PAC;(2)由题设条件及图知,可证明∠DGP即为二面角D-AC-P的平面角,然后在△DGP中,由余弦定理可求得.法二(空间向量法):(1)可建立空间坐标系,求出直线DO的方向向量与平面PAC内两条相交直线的方向向量,然后根据向量的数量积为0证明此线垂直于平面内两条相交直线,从而由线面垂直的判定定理证明得线面垂直;(2)由题意可得DF⊥平面PAC,设点F的坐标为(x,y,0),故即为平面PAC的法向量,设平面DAC的法向量,由题设条件建立方程解出此两向量的坐标,求出此向量的夹角即可得到两平面所成的锐二面角.
点评:本题考查线面垂直的证明与二面角的求法,是立体几何中的常规题,解答本题常用的方法有向量法与几何法,本题给出两种解法,学习时要注意对比两种解题方法的优劣,体会向量法解立体几何问题的优势