设P是△ABC内任意一点,S△ABC表示△ABC的面积,λ1=,λ2=,λ3=,定义f(P)=(λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(,,),则A.点

发布时间:2020-08-01 06:08:34

设P是△ABC内任意一点,S△ABC表示△ABC的面积,λ1=,λ2=,λ3=,定义f(P)=(λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(,,),则A.点Q在△GAB内B.点Q在△GBC内C.点Q在△GCA内D.点Q与点G重合

网友回答

A

解析分析:分析知λ的值对应的是P分△ABC所得三个三角形的高与△ABC的高的比值,比值大,说明相应的小三角形的高比较大,f(Q)=(,,)可以得出Q点离线段AB距离近,故其应在△GAB内.

解答:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,∵f(Q)=(,,)∴P离线段AB的距离最近,故点Q在△GAB内由分析知,应选A.

点评:考查对新定义的理解,此类题关键是通过新给出的定义明了定义所告诉的关系与运算,然后用定义所提供的方式来解题,本题是把相应的坐标与小三角形的高与大三角形的比值对应起来,根据坐标即可得出相应的定点到三个边距离的远近.以此来判断相应的点在大三角形中的相应位置.
以上问题属网友观点,不代表本站立场,仅供参考!