如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=,EF=2.(1)求异面直线AD与EF所成的角;(2)当AB的长

发布时间:2020-07-31 16:39:30

如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?

网友回答

解:如图,以点C为坐标原点,以CB,CF和CD分别为作x轴,y轴和z轴,建立空间直角坐标系
设AB=a,BE=b,CF=c,(b<c)
则,
F(0,c,0),D(0,0,a)(2分)
(I),
由,得3+(b-c)2=4,∴b-c=-1.
所以.
所以,
所以异面直线AD与EF成30°
(II)设为平面AEF的法向量,则,
结合,
解得.(8分)
又因为BA⊥平面BEFC,,
所以,
得到.
所以当AB为时,二面角A-EF-C的大小为45°.

解析分析:(I)以点C为坐标原点,以CB,CF和CD分别为作x轴,y轴和z轴,建立空间直角坐标系,设AB=a,BE=b,CF=c,(b<c),根据,即可求出向量,然后利用异面直线所在的向量的夹角公式求出所成角即可求得异面直线AD与EF所成角;(II)先求出平面AEF的法向量,然后求出,利用向量的夹角公式求出两向量的夹角,根据二面角平面角的大小建立等式,即可求出此时AB的长.

点评:本题主要考查了异面直线的所成角的度量,以及二面角的度量,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.
以上问题属网友观点,不代表本站立场,仅供参考!