三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,直线A1C与底面成60°角,AB=BC=CA=2,AA1=A1B,则该棱柱的体积为________.
网友回答
解析分析:取AB的中点D,连接A1D,CD,由AB=BC=CA=2,AA1=A1B,知A1D⊥AB,CD⊥AB,直线A1C与底面成60°角,所以∠A1CD=60°,,,A1D=3,A1D是三棱柱ABC-A1B1C1的高,由此能求出该棱柱的体积.
解答:取AB的中点D,连接A1D,CD,∵AB=BC=CA=2,AA1=A1B,∴A1D⊥AB,CD⊥AB,∵直线A1C与底面成60°角,∴∠A1CD=60°,,,A1D=3,A1D是三棱柱ABC-A1B1C1的高,∴S△ABC==.∴该棱柱的体积V=S△ABC?A1D=3.故