设y=+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,则x的取值范围是________.
网友回答
(0,)∪(8,+∞)
解析分析:构造函数f(t)=(log2x-1)t+(log2x)2-2log2x+1,根据t∈[-2,2]时,f(t)恒为正值,可得f(-2)>0,f(2)>0,即可得到不等式,由此可确定x的取值范围.
解答:构造函数f(t)=(log2x-1)t+(log2x)2-2log2x+1,∵t∈[-2,2]时,f(t)恒为正值,∴f(-2)>0,f(2)>0∴-2(log2x-1)+(log2x)2-2log2x+1>0,2(log2x-1)+(log2x)2-2log2x+1>0∴(log2x)2-4log2x+3>0,(log2x)2-1>0∴log2x<-1或log2x>3,即0<x<或x>8.故