解答题某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
(I)请完成此统计表;
(II)试估计高三年级学生“同意”的人数;
(III)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同决的概率.”
网友回答
解:(I)被调查人答卷情况统计表:
(II)∵由表格可以看出女生同意的概率是,男生同意的概率是,
用男女生同意的概率乘以人数,得到同意的结果数
(人)
(III)设“同意”的两名学生编号为1,2,
“不同意”的四名学生分别编号为3,4,5,6,
选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),
(3,6),(4,5),(4,6),(5,6)共15种方法;
其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),
(2,5),(2,6),8种满足题意,
则恰有一人“同意”一人“不同意”的概率为.解析分析:(I)根据所给的男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,得到女生男生和教师共需抽取的人数,根据表中所填写的人数,得到空着的部分.(II)根据由表格可以看出女生同意的概率是,男生同意的概率是,用男女生同意的概率乘以人数,得到同意的结果数.(III)由题意知本题是一个古典概型,试验发生包含的事件数和满足条件的事件数,可以通过列举得到结果,然后根据古典概型概率公式得到结果.点评:本题考查古典概型,考查分层抽样,考查用列举法得到事件数,是一个综合题目,但是题目应用的原理并不复杂,是一个送分题目.