已知二项式的展开式中第4项为常数项,则1+(1-x)2+(1-x)3+…+(1-x)n中x2项的系数为
A.-19
B.19
C.20
D.-20
网友回答
C解析分析:利用二项式定理的通项公式以及展开式中第4项为常数项,求出n,然后表示出1+(1-x)2+(1-x)3+…+(1-x)n中x2项通过组合数的性质,求出结果.解答:因为二项式的展开式的通项公式,=,展开式的第4项为常数项,所以,r=3,所以,n=5,则1+(1-x)2+(1-x)3+(1-x)4+(1-x)5中x2项的系数为:C22+C32+C42+C52=1+3+6+10=20.故选C.点评:本题是基础题,考查二项式定理系数的性质,考查二项式特定项系数的求法,考查计算能力.