已知函数f(x)=2sinxcosx+cos2x-sin2x.(1)求f(x)的最小正周期;(2)在△ABC中,角A,B,C对应的三边为a,b,c,若f(A)=1,a

发布时间:2020-07-31 19:16:31

已知函数f(x)=2sinxcosx+cos2x-sin2x.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C对应的三边为a,b,c,若f(A)=1,a=2,b=4,求c的值及△ABC的面积.

网友回答

解:(1)函数f(x)=sin2x+cos2x=2sin(2x+)
∴f(x)的最小正周期T==π;
(2)∵f(A)=1,∴2sin(2A+)=1,∵A∈(0,π),∴A=,
∵a=2,b=4,
∴由余弦定理可得28=16+c2-2×4×c×cos
∴c2-4c-12=0
∴c=6
∴△ABC的面积==6.
解析分析:(1)利用二倍角、辅助角公式化简函数,即可求得函数的f(x)的最小正周期;(2)先求出A,再利用余弦定理,求得c,进而可求△ABC的面积.

点评:本题考查三角函数的化简,考查余弦定理,考查三角形的面积,考查学生的计算能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!