下列命题中:①函数,f(x)=sinx+(x∈(0,π))的最小值是2;②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;③如果正实数a,b,c满足a?+?b>c则+>;④如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件.其中正确的命题是A.①②③④B.①④C.②③④D.②③
网友回答
C
解析分析:根据基本不等式和三角函数的有界性可知真假,利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A-B)=0,推断出A+B=或A=B,则三角形形状可判断出.构造函数y=,根据函数的单调性可证得结论;由函数极值点与导数的关系,我们易判断对错.
解答:①f(x)=sinx+≥2,当sinx=时取等号,而sinx的最大值是1,故不正确;②∵sin2A=sin2B∴sin2A-sin2B=cos(A+B)sin(A-B)=0∴cos(A+B)=0或sin(A-B)=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形,故正确;③可构造函数y=,该函数在(0.+∞)上单调递增,a+b>c则+>,故正确;④∵f(x)是定义在R上的可导函数,当f′(x0)=0时,x0可能f(x)极值点,也可能不是f(x)极值点,当x0为f(x)极值点时,f′(x0)=0一定成立,故f′(x0)=0是x0为f(x)极值点的必要不充分条件,故④正确;故选C.
点评:考查学生会利用基本不等式解题,注意等号成立的条件,同时考查了极值的有关问题,属于综合题.