如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.

发布时间:2020-07-31 21:33:13

如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.

网友回答

解:四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面
=πr22+π(r1+r2)l2+πr1l1
=
=
=.
体积V=V圆台-V圆锥
=[25π++4π]×4-×2π×2×2
=×39π×4-×8π
=.
所求表面积为:,体积为:.
解析分析:旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.求出圆台体积减去圆锥体积,即可得到几何体的体积.

点评:本题是基础题,考查旋转体的表面积与体积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.
以上问题属网友观点,不代表本站立场,仅供参考!