已知函数,其中t为常数,且t>0.(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;(Ⅱ)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-

发布时间:2020-07-31 13:19:45

已知函数,其中t为常数,且t>0.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),且设,证明:对任意的x>0,,n=1,2,….

网友回答

(Ⅰ)解:∵,
∴…(3分)
∵x>0,
∴当x<t时,f't(x)>0;
当x>t时,f't(x)<0,
∴当x=t时,ft(x)取得最大值.?…(6分)
(Ⅱ)证明:由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∴an=an-1+2n-1(n≥3)…(5分)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1(n≥3)…(8分)
检验知n=1、2时,结论也成立,
故an=2n+1.…(9分)
所以,
令,
则,
由(Ⅰ)可知,.
∴对任意的x>0,不等式成立.…(13分)

解析分析:(Ⅰ)由,知.由此能求出函数ft(x)在(0,+∞)上的最大值.?(Ⅱ)由Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),知an=an-1+2n-1(n≥3),故an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n+1.所以,由此能够证明对任意的x>0,不等式成立.

点评:本题考查数列与不等式的综合应用,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意导数的性质和累加求和法的合理运用.易错点是运算量大,容易失误,解题时要注意计算能力的培养.
以上问题属网友观点,不代表本站立场,仅供参考!