已知数列{an}满足an+1+an=4n-3(n∈N*).
(1)若数列{an}是等差数列,求a1的值;
(2)当a1=2时,求数列{an}的前n项和Sn.
网友回答
解:(1)若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.
由an+1+an=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,即2d=4,2a1-d=-3,
解得,.…(7分)
(2)①当n为奇数时,=a1+(a2+a3)+(a4+a5)+…+(an-1+an)==…(11分)
②当n为偶数时,Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-1+an)=1+9+…+(4n-7)=.(14分)
解析分析:(1)根据数列{an}是等差数列,写出通项an=a1+(n-1)d,an+1=a1+nd.,结合an+1+an=4n-3,可求a1的值;(2)分类讨论:n为奇数,Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+an); n为偶数,Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-1+an).进行分组求和即可.
点评:本题以数列递推式为载体,考查等差数列公式的运用,考查分组求和.