已知角α为锐角,且sin2α-sinαcosα-2cos2α=0.
(Ⅰ)求tanα的值;
(Ⅱ)求.
网友回答
解:(I)由sin2α-sinαcosα-2cos2α=0得,(sinα-2cosα)(sinα+cosα)=0
∵角α为锐角,∴sinα>0,cosα>0,sinα-2cosα=0,故tanα=2
(II)由(I)得,
=.
解析分析:(I)整理题设等式成(sinα-2cosα)(sinα+cosα)=0,判断出sinα-2cosα=0,弦化成切求得tanα的值.(Ⅱ)利用同角三角函数的基本关系,利用tanα的值求得sinα和cosα,进而利用两角和公式把展开后把sinα和cosα的值代入即可.
点评:本题主要考查了同角三角函数的基本关系的应用,三角函数恒等变换的应用.考查了考生对三角函数基础公式的熟练记忆.