点P为双曲线C1:和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为A.B.C.

发布时间:2020-08-01 02:29:32

点P为双曲线C1:和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为A.B.C.D.2

网友回答

C
解析分析:由题意:PF1⊥PF2,且2∠PF1F2=∠PF2F1,故∠PF1F2=30°,∠PF2F1=60°.设|PF2|=m,则|PF1|=m,|F1F2|=2m.由e=,能求出双曲线的离心率.

解答:由题意:PF1⊥PF2,且2∠PF1F2=∠PF2F1,∴∠PF1F2=30°,∠PF2F1=60°.设|PF2|=m,则|PF1|=m,|F1F2|=2m.e===+1.故选C.

点评:本题考查双曲线的离心率的求法,解题时要认真审题,灵活运用双曲线的性质,合理地进行等价转化.
以上问题属网友观点,不代表本站立场,仅供参考!