已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,
g′(x)>0,则当x<0时有A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
网友回答
B
解析分析:由已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),知f(x)为奇函数,g(x)为偶函数,又由当x>0时,f′(x)>0,g′(x)>0,可得在区间(0,+∞)上f(x),g(x)均为增函数,然后结合奇函数、偶函数的性质不难得到