已知数列{an}具有性质:①a1为整数;②对于任意的正整数n,当an为偶数时,;当an为奇数时,.
(1)若a1=64,求数列{an}的通项公式;
(2)若a1,a2,a3成等差数列,求a1的值;
(3)设(m≥3且m∈N),数列{an}的前n项和为Sn,求证:.
网友回答
解:(1)由,可得,,…,,,,a9=0,…,
即{an}的前7项成等比数列,从第8起数列的项均为0.
故数列{an}的通项公式为.
(2)若a1=4k(k∈Z)时,,,
由a1,a2,a3成等差数列,可知即2(2k)=k+4k,解得k=0,故a1=0;
若a1=4k+1(k∈Z)时,,
由a1,a2,a3成等差数列,可知2(2k)=(4k+1)+k,解得k=-1,故a1=-3;
若a1=4k+2(k∈Z)时,,,
由a1,a2,a3成等差数列,可知2(2k+1)=(4k+2)+k,解得k=0,故a1=2;
若a1=4k+3(k∈Z)时,,,
由a1,a2,a3成等差数列,可知2(2k+1)=(4k+3)+k,解得k=-1,故a1=-1;
∴a1的值为-3,-1,0,2. (3)由(m≥3),可得,,,
若,则ak是奇数,从而,
可得当3≤n≤m+1时,成立.
又,am+2=0,…
故当n≤m时,an>0;当n≥m+1时,an=0.
故对于给定的m,Sn的最大值为a1+a2+…+am=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3-1)+…+(21-1)=(2m+2m-1+2m-2+…+21)-m-3=2m+1-m-5,
故.
解析分析:(1)由,可得{an}的前7项成等比数列,从第8起数列的项均为0,从而利用分段函数的形式写出数列{an}的通项公式即可;
(2)对a1进行分类讨论:若a1=4k(k∈Z)时;若a1=4k+1(k∈Z)时;若a1=4k+2(k∈Z)时;若a1=4k+3(k∈Z)时,结合等差数列的性质即可求出a1的值;
(3)由(m≥3),可得a2,a3,a4.若,则ak是奇数,可得当3≤n≤m+1时,成立,又当n≤m时,an>0;当n≥m+1时,an=0.故对于给定的m,Sn的最大值为2m+1-m-5,即可证出结论.
点评:本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.