如图,在边长为1的正方形OABC内取一点P(x,y),求:(1)点P到原点距离小于1的概率;(2)以x,y,1为边长能构成三角形的概率;(3)以x,y,1为边长能构成

发布时间:2020-07-31 17:44:11

如图,在边长为1的正方形OABC内取一点P(x,y),求:
(1)点P到原点距离小于1的概率;
(2)以x,y,1为边长能构成三角形的概率;
(3)以x,y,1为边长能构成锐角三角形的概率.

网友回答

解:(1)若点P到原点距离小于1,则P位于以O为圆心、半径为1的圆内部

因此,点P到原点距离小于1的概率为P1==?? (3分)?
(2)若以x,y,1为边长能构成三角形,
则有,
对应区域为正方形ABCO内部且位于直线AC上方,即△ABC及其内部,
因此以x、y、1为边长能构成三角形的概率为P2==????(6分)
(3)以x,y,1为边长能构成锐角三角形,注意到最长的边等于1
可得,
对应区域为正方形ABCO内部且位于以O为圆心、半径为1的圆外部,即如图的阴影部分
因此以x,y,1为边长能构成锐角三角形的概率为
P3==1-??? (10分)
答:(1)点P到原点距离小于1的概率为;
(2)以x,y,1为边长能构成三角形的概率为;
(3)以x,y,1为边长能构成锐角三角形的概率为1-.(12分)

解析分析:(1)点P到原点距离小于1,则P位于以O为圆心、半径为1的圆内部,因此所求概率等于如图的扇形面积与正方形ABCO的面积之比,由此即可算出P到原点距离小于1的概率;(2)以x、y、1为边长能构成三角形,则P位于的区域为如图的△ABC及其内部,因此用△ABC面积除以正方形ABCO的面积,即可得到以x、y、1为边长能构成三角形的概率;(3)以x、y、1为边长能构成锐角三角形,则P位于的区域为正方形ABCO内部且位于以O为圆心、半径为1的圆外部,即如图的阴影部分,由此即可算出以x、y、1为边长能构成锐角三角形的概率.

点评:本题给出点P在以O(0,0)、A(1,0)、B(1,1)、C(0,1)为顶点的正方形内部运动,求以P的坐标x、y为两边,1为第三边能构成三角形的概率.着重考查了扇形面积公式、正方形面积公式和几何概型计算公式等知识,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!