如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P在棱BB1上运动(不含B,B1两点),求△APC1的面积S的最小值.

发布时间:2020-08-01 02:43:49

如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P在棱BB1上运动(不含B,B1两点),求△APC1的面积S的最小值.

网友回答

解:以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴建立空间直角坐标系,
设PB1=t(0<t<1),则A(1,0,1),C1(0,1,0),P(1,1,t),在AC1上任取一点Q(a,b,c),
由,得(a-1,b,c-1)=λ(-1,1,-1),
∴a=1-λ,b=λ,c=1-λ,
令x=1-λ,有Q(x,1-x,x),又,,,
当△APC1的面积S的最小时,最小,必有,,
得,∴,
解得,这时=,即,又.
∴△APC1的面积,即△APC1的面积S的最小值为.
解析分析:建立空间直角坐标系后,设PB1=t,在AC1上任取一点Q,要使△APC1的面积S最小,必有与,求点P,Q的坐标后,即可求出三角形高的最小值,由此可求S的最小值.

点评:本题考点是点、线、面间的距离的计算,由于本题易于建立空间直角坐标系求距离,进而求△APC1的面积,所以选用了“坐标法”,但要注意过程中的细节处理,尽一切可能的降低运算量,如令x=1-λ.若用“几何法”,易产生漏洞,因位置关系判断不准而致求△APC1的面积出错.
以上问题属网友观点,不代表本站立场,仅供参考!