如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB.(2)求二面角B-AP-C的正弦值.

发布时间:2020-08-01 02:43:42

如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求证:PC⊥AB.
(2)求二面角B-AP-C的正弦值.

网友回答


解:(Ⅰ)取AB中点D,连接PD,CD.∵AP=BP,∴PD⊥AB.∵CA=CB,∴CD⊥AB.
∵PD∩CD=D,∴AB⊥平面PCD.∵PC?平面PCD,∴PC⊥AB.
(Ⅱ)∵AC=BC,PA=PAB,∴△APC≌△BPC,又 PC⊥AC,∴PC⊥BC.
又∠ACB=90°,即 AC⊥BC,且 AC∩PC=C,∴BC⊥平面PAC.
取AP中点E,连接BE,CE.∵BA=BP,∴BE⊥AP.∵EC是BE在平面PAC内的射影,
∴CE⊥AP.∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE==,∴sin∠BEC==.
∴二面角B-AP-C的正弦值为.


解析分析:(Ⅰ)取AB中点D,利用等腰三角形的性质可得PD⊥AB,CD⊥AB,由线面垂直的判定定理可得AB⊥平面PCD,从而得到?PC⊥AB.(Ⅱ)利用线面垂直的判定定理得BC⊥平面PAC,取AP中点E,可证∠BEC是二面角B-AP-C的平面角,利用?sin∠BEC=?求出结果.

点评:本题考查证明线线垂直的方法,求二面角的平面角的大小的方法,找出二面角的平面角是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!