在平面直角坐标系xOy中,过原点O的直线与函数y=log8x的图象交于A、B两点(A在B的左侧),分别过A、B作y轴的平行线分别与函数y=log2x的图象交于C、D两

发布时间:2020-07-31 22:21:57

在平面直角坐标系xOy中,过原点O的直线与函数y=log8x的图象交于A、B两点(A在B的左侧),分别过A、B作y轴的平行线分别与函数y=log2x的图象交于C、D两点,若BC∥x轴,则四边形ABCD的面积为________.

网友回答


解析分析:设出A、B的坐标,求出OA、OB的斜率相等利用三点共线得出A、B的坐标之间的关系.再根据BC平行x轴,B、C纵坐标相等,推出横坐标的关系,结合之前得出A、B的坐标之间的关系即可求出A的坐标,从而解出B、C、D的坐标,最后利用梯形的面积公式求解即可.

解答:解:设点A、B的横坐标分别为x1、x2由题设知,x1>1,x2>1.则点A、B纵坐标分别为log8x1、log8x2.因为A、B在过点O的直线上,所以 =,点C、D坐标分别为(x1,log2x1),(x2,log2x2).由于BC平行于x轴知log2x1=log8x2,即得log2x1=log2x2,∴x2=x13.代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1.由于x1>1知log8x1≠0,∴x13=3x1.考虑x1>1解得x1=.于是点A的坐标为(,log8)即A(, log23)∴B(3,log23),C(,log23),D(3,log23).∴梯形ABCD的面积为S=(AC+BD)×BC=( log23+log23)×2=.故
以上问题属网友观点,不代表本站立场,仅供参考!