已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∪B=B,求a的值;
(2)若A∩B=B,求a的值.
网友回答
解:(1)A={-4,0}(2分)
若A∪B=B,则B=A={-4,0},解得:a=1(5分)
(2)若A∩B=B,则
①若B为空集,则△=4(a+1)2-4(a2-1)=8a+8<0
则a<-1;(8分)
②若B为单元集,则△=4(a+1)2-4(a2-1)=8a+8=0
解得:a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0得:x2=0得:x=0即B=0符合要求;(11分)
③若B=A={-4,0},则a=1(13分)
综上所述,a≤-1或a=1.(14分)
解析分析:(1)先化简集合A,再由A∪B=B知A是B的子集,由此求得a的值.(2)由A∩B=B,知B是A的子集,对集合B进行分类讨论:①若B为空集,②若B为单元集,③若B=A={-4,0},由此求得a的值即可.
点评:本小题主要考查子集与交集、并集运算的转换、一元二次方程的解等基础知识,考查分类讨论思想、方程思想.属于基础题.