两个命题P:“对任意实数x都有ax2+ax+1>0恒成立”;Q:“关于x的方程x2-x+a=0有两个不等的实数根”,如果P∨Q为真命题,P∧Q为假命题,则实数a的取值

发布时间:2020-08-01 02:39:51

两个命题P:“对任意实数x都有ax2+ax+1>0恒成立”;Q:“关于x的方程x2-x+a=0有两个不等的实数根”,如果P∨Q为真命题,P∧Q为假命题,则实数a的取值范围是________.

网友回答

(-∞,0)∪[,4)
解析分析:根据二次函数恒成立,求出命题p为真时a的取值范围,根据二次方程有实根求出命题q为真时a的取值范围,然后根据p∨q为真命题,p∧q为假命题,则命题p,q中一个为真一个为假,分类讨论后,即可得到实数a的取值范围.

解答:解;∵对任意实数x都有ax2+ax+1>0恒成立”①a=0时,1>0恒成立②a≠0时,由二次函数的性质可得,解可得0<a<4综上可得P:0≤a<4∵关于x的方程x2-x+a=0有不等实数根∴△=1-4a>0∴Q:a<∵p∨q为真命题,p∧q为假命题,即p真q假,或p假q真如果p真q假,,∴如果p假q真,,∴a<0所以实数a的取值范围为a<0或,故
以上问题属网友观点,不代表本站立场,仅供参考!