在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是A.B.C.D.

发布时间:2020-08-01 02:39:31

在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是A.B.C.D.

网友回答

C
解析分析:设A1C1∩B1D1=O1,根据线面垂直的判定定理可知B1D1⊥平面AA1O1,再根据面面垂直的判定定理可知故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过A1作A1H⊥AO1于H,则A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,利用等面积法求出A1H即可.

解答:解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,AO1=3,由A1O1?A1A=h?AO1,可得A1H=,故选:C.

点评:本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!