设F(x)=f(x)g(x)是R上的奇函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(2)=0,则不等式F(x)<0的解集是A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)
网友回答
D
解析分析:先根据f′(x)g(x)+f(x)g′(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数F(x)的奇偶性可确定F(x)在x>0时也是增函数,最后根据g(-2)=0可求得