设f(x)是定义在R上的函数,且对任意实数x、y都有f(x+y)=f(x)+f(y).求证:(1)f(x)是奇函数;(2)若当x>0时,有f(x)>0,则f(x)在R

发布时间:2020-07-31 18:01:54

设f(x)是定义在R上的函数,且对任意实数x、y都有f(x+y)=f(x)+f(y).求证:
(1)f(x)是奇函数;
(2)若当x>0时,有f(x)>0,则f(x)在R上是增函数.

网友回答

解:(1)显然f(x)的定义域是R,关于原点对称.
又∵函数对一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)为奇函数.
(2)任取x1<x2,x2-x1>0,则f(x2-x1)>0
∴f(x2)+f(-x1)>0;
对f(x+y)=f(x)+f(y)取x=y=0得:f(0)=0,
再取y=-x得f(x)+f(-x)=0即f(-x)=-f(x),
∴有f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴f(x)在R上递增.

解析分析:(1)判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,∴令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;(2)依据函数单调性的定义判断函数的单调性,充分利用条件当x>0时,有f(x)>0与f(x+y)=f(x)+f(y),即可判定单调性.

点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!