将一枚骰子先后抛掷2次,观察向上面的点数
(Ⅰ)点数之和是5的概率;
(Ⅱ)设a,b分别是将一枚骰子先后抛掷2次向上面的点数,求式子2a-b=1成立的概率.
网友回答
解:由题意知本题是一个古典概型,∵试验发生包含的所有事件由分步计数原理知有6×6=36种结果.(Ⅰ)将一枚骰子先后抛掷2次,向上的点数分别记为a,b,点数之和是5的情况有以下4种不同的结果:
因此,点数之和是5的概率为.
(Ⅱ)由2a-b=1得2a-b=20,∴a-b=0,∴a=b.
而将一枚骰子先后抛掷2次向上的点数相等的情况有以下6种不同的结果:,
因此,式子2a-b=1成立的概率为.
解析分析:由题意知本题是一个古典概型,试验发生包含的所有事件由分步计数原理知有6×6种结果,满足条件的事件是向上点数之和是5,列举出结果,根据古典概型公式得到结果.
点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.