设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极

发布时间:2020-07-09 04:46:48

设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是













A.












B.











C.











D.

网友回答

C解析分析:利用函数极小值的意义,可知函数f(x)在x=-2左侧附近为减函数,在x=-2右侧附近为增函数,从而可判断当x<0时,函数y=xf′(x)的函数值的正负,从而做出正确选择解答:∵函数f(x)在x=-2处取得极小值,∴f′(-2)=0,且函数f(x)在x=-2左侧附近为减函数,在x=-2右侧附近为增函数,即当x<-2时,f′(x)<0,当x>-2时,f′(x)>0,从而当x<-2时,y=xf′(x)>0,当-2<x<0时,y=xf′(x)<0,对照选项可知只有C符合题意故选 C点评:本题主要考查了导函数与原函数图象间的关系,函数极值的意义及其与导数的关系,筛选法解图象选择题,属基础题
以上问题属网友观点,不代表本站立场,仅供参考!