已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.
网友回答
解:(1)设椭圆的方程为,由已知得b=1.
设右焦点为(c,0),由题意得,∴,
∴a2=b2+c2=3.
∴椭圆的方程为.
(2)直线l的方程y=kx+,代入椭圆方程,得
(1+3k2)x2+9kx+=0.
由△=81k2-15(1+3k2)>0得,
设点M(x1,y1),N(x2,y2),
则,
设M、N的中点为P,则点P的坐标为.
∵|BM|=|BN|,∴点B在线段MN的中垂线上.
,化简,得.
∵,∴,
所以,存在直线l满足题意,直线l的方程为
或.
解析分析:(1)设椭圆的方程为,由已知得b=1.设右焦点为(c,0),由题意得,由此能求出椭圆的方程.(2)直线l的方程y=kx+,代入椭圆方程,得(1+3k2)x2+9kx+=0.由△=81k2-15(1+3k2)>0得,设点M(x1,y1),N(x2,y2),则,设M、N的中点为P,则点P的坐标为.由此入手能够导出直线l的方程.
点评:本题考查直线和圆锥曲线的位置关系和综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.