解答题已知n∈N*,设函数.
(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.
网友回答
解:(1)因为y=f2(x)-kx=1-x+-kx,
所以y′=-1+x-x2-k=-(x2-x+k+1),
方程x2-x+k+1=0的判别式△=(-1)2-4(k+1)=-3-4k,
当k≥-时,△≤0,y′=-(x2-x+k+1)≤0,
故函数y=f2(x)-kx在R上单调递减;
当k<-时,方程x2-x+k+1=0的两根为,,
则x∈(-∞,x1)时,y′<0,x∈(x1,x2)时,y′>0,x∈(x2,+∞)时,y′<0,
故函数y=f2(x)-kx(k∈R)的单调递减区间为(-∞,x1)和(x2,+∞),单调递增区间为(x1,x2);
(2)存在t=1,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解,理由如下:
当n=1时,f1(x)=1-x,令f1(x)=1-x=0,解得x=1,
所以关于x的方程f1(x)=0有唯一实数解x=1;
当n≥2时,由fn(x)=1-x+-+…-,
得fn′(x)=-1+x-x2+…+x2n-3-x2n-2,
若x=-1,则f′n(x)=f′n(-1)=-(2n-1)<0,
若x=0,则f′n(x)=-1<0,
若x≠-1且x≠0时,则f′n(x)=-,
当x<-1时,x+1<0,x2n-1+1<0,f′n(x)<0,
当x>-1时,x+1>0,x2n-1+1>0,f′n(x)<0,
所以f′n(x)<0,故fn(x)在(-∞,+∞)上单调递减.
因为fn(1)=(1-1)+()+()+…+()>0,
fn(2)=(1-2)+()+(-)+…+(-)
=-1+()?22+()?24+…+
=-1-?22--…-<0,
所以方程fn(x)=0在[1,2]上有唯一实数解,
综上所述,对于任意n∈N*,关于x的方程fn(x)=0在区间[1,2]上有唯一实数解,所以t=1.解析分析:(1)y=f2(x)-kx=1-x+-kx,求导数y′,按△≤0,△>0两种情况讨论,△≤0时y′≤0,可知函数在R上的单调性;当△>0时解不等式y′>0,y′<0即得函数的单调区间;(2)先求n=1时方程fn(x)=0的根,得区间[1,2],理由如下:n=1时求出方程的根,易判断;当n≥2时,求出fn′(x),讨论可得x=-1,0时f′n(x)<0,x≠-1,0时,利用等比数列求和公式可化简f′n(x),此时也可判断f′n(x)<0,从而可得fn(x)在(-∞,+∞)上单调递减.而fn(1)0,根据零点存在定理及函数单调性知,方程fn(x)=0在[1,2]上有唯一实数解,综述可得结论;点评:本小题主要考查三次函数、一元二次不等式、一元二次方程、函数的零点、数列求和等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括、推理论证、运算求解、创新意识.