已知m∈R,函数f(x)=(x2+mx+m)ex.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式

发布时间:2020-08-01 02:41:51

已知m∈R,函数f(x)=(x2+mx+m)ex.
(1)若函数f(x)没有零点,求实数m的取值范围;
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(3)当m=0时,求证:f(x)≥x2+x3.

网友回答

解:(1)令f(x)=0,得(x2+mx+m)?ex=0,所以x2+mx+m=0.
因为函数f(x)没有零点,所以△=m2-4m<0,所以0<m<4.(4分)
(2)f'(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,
令f'(x)=0,得x=-2,或x=-m,
当m>2时,-m<-2.列出下表:
x(-∞,-m)-m(-m,-2)-2(-2,+∞)f'(x)+0-0+f(x)↗me-m↘(4-m)e-2↗当x=-m时,f(x)取得极大值me-m.(6分)
当m=2时,f'(x)=(x+2)2ex≥0,f(x)在R上为增函数,
所以f(x)无极大值.(7分)
当m<2时,-m>-2.列出下表:

x(-∞,-2)-2(-2,-m)-m(-m,+∞)f'(x)+0-0+f(x)↗(4-m)e-2↘me-m↗当x=-2时,f(x)取得极大值(4-m)e-2,(9分)
所以(10分)
(3)当m=0时,f(x)=x2ex,令?(x)=ex-1-x,则?'(x)=ex-1,
当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,
所以当x=0时,φ(x)取得最小值0.(13分)
所以φ(x)≥φ(0)=0,ex-1-x≥0,所以ex≥1+x,
因此x2ex≥x2+x3,即f(x)≥x2+x3.(16分)
解析分析:(1)若函数没有零点,则对应的方程(x2+mx+m)ex=0没有实根,根据指数的性质,我们易将问题转化为二次方程根的个数判断问题,由此列出关于m的不等式,解不等式即可得到
以上问题属网友观点,不代表本站立场,仅供参考!