设集合A={x|y=log2(x-1)},B={y|y=-x2+2x-2,x∈R}(1)求集合A,B;(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a

发布时间:2020-08-01 02:12:48

设集合A={x|y=log2(x-1)},B={y|y=-x2+2x-2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.

网友回答

解:(1)A={x|y=log2(x-1)}={x|(x-1)>0}=(1,+∞),
B={y|y=-x2+2x-2,x∈R}={y|y=-(x-1)2-1,x∈R}=(-∞,-1].
(2)集合C={x|2x+a<0}={x|x<-},
∵?B∪C=C,
∴B?C,
∴,∴实数a的取值范围(-∞,2).

解析分析:(1)集合A即函数y=log2(x-1)定义域,B即y=-x2+2x-2,x∈R的值域.(2)先求出集合C,由B∪C=C?可得?B?C,∴->-1,解不等式得到实数a的取值范围.

点评:本题考查函数的定义域、值域的求法,利用集合间的关系求参数的取值范围.
以上问题属网友观点,不代表本站立场,仅供参考!