在数列{an}中,,
(1)计算a2,a3,a4
(2)猜想数列{an}的通项公式,并用数学归纳法证明.
网友回答
解:(1):,
(2):猜想
下面用数学归纳法证明这个猜想.①当n=1时,a1=1,命题成立.
②假设n=k时命题成立,即
当n=k+1时
由①②知命题对一切n∈N*均成立.
解析分析:(1)由数列{an}的递推公式依次求出a2,a3,a4;(2)根据a1,a2,a3,a4值的结构特点猜想{an}的通项公式,再用数学归纳法①验证n=1成立,②假设n=k时命题成立,证明当n=k+1时命题也成立.
点评:本题是中档题,考查数列递推关系式的应用,数学归纳法证明数列问题的方法,考查逻辑推理能力,计算能力.注意在证明n=k+1时用上假设,化为n=k的形式.