下图中的三角形称为谢宾斯基(Sierpinski)三角形.这些三角形中的着色与未着色的三角形的个数具有一定的规律.按图(1)、(2)、(3)、(4)四个三角形的规律继

发布时间:2020-07-31 22:44:50

下图中的三角形称为谢宾斯基(Sierpinski)三角形.这些三角形中的着色与未着色的三角形的个数具有一定的规律.按图(1)、(2)、(3)、(4)四个三角形的规律继续构建三角形,设第n个三角形中包含f(n)个未着色三角形.

(Ⅰ)求出f(5)的值;
(Ⅱ)写出f(n+1)与f(n)之间的关系式,并由此求出f(n)的表达式;
(Ⅲ)设,数列{an}的前n项和为Sn,求证:.

网友回答

解:(Ⅰ)由图知f(1)=0,f(2)=1,f(3)=1+3=4,f(4)=1+3+9=13,f(5)=1+3+9+27=40
(Ⅱ)方法1:由f(2)-f(1)=1,f(3)-f(2)=3,f(4)-f(3)=9,f(5)-f(4)=27
归纳得:f(n+1)-f(n)=3n-1(n∈N*)∴f(n)=f(1)+[f(2)-f(1)]+[f(3)-f(2)]+…+[f(n)-f(n-1)]=,
方法2:f(2)=3f(1)+1,f(3)=3f(2)+1,f(4)=3f(3)+1,f(5)=3f(4)+1
归纳得:f(n+1)=3f(n)+1(n∈N*)
由f(n+1)=3f(n)+1,可得
∴数列是首项为,公比为3的等比数列
∴,即
(Ⅲ)由,得
∴.
∵3n+1≥9,∴,
∴.
解析分析:(Ⅰ)由图知f(1)=0,f(2)=1,f(3)=4,f(4)=13,从而可得f(5)的值;(Ⅱ)方法1:由f(2)-f(1)=1,f(3)-f(2)=3,f(4)-f(3)=9,f(5)-f(4)=27,归纳得:f(n+1)-f(n)=3n-1(n∈N*),利用叠加法,可求f(n)的表达式;方法2:f(2)=3f(1)+1,f(3)=3f(2)+1,f(4)=3f(3)+1,f(5)=3f(4)+1,归纳得:f(n+1)=3f(n)+1(n∈N*),从而可证数列是首项为,公比为3的等比数列,即可求f(n)的表达式;(Ⅲ)由,得,进而可求数列{an}的前n项和为Sn,由此可证结论成立.

点评:本题考查归纳推理,考查数列通项的求解,考查数列的求和,考查学生阅读分析的能力,综合性强.
以上问题属网友观点,不代表本站立场,仅供参考!