若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间是A.(-∞,-)B.C.D.(0,+∞)

发布时间:2020-07-31 18:31:34

若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间是A.(-∞,-)B.C.D.(0,+∞)

网友回答

C
解析分析:先求出2x2+x,x∈时的范围,再由条件f(x)>0判断出a的范围,再根据复合函数“同增异减”原则求f(x)单调区间.

解答:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=loga(2x2+x)(a>0,a≠1)由f(x)=logat和t=2x2+x复合而成,0<a<1时,f(x)=logat在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为,∴f(x)的单调增区间为,故选C.

点评:本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.
以上问题属网友观点,不代表本站立场,仅供参考!