设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关

发布时间:2020-07-31 17:09:44

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为A.(-2,4]B.C.D.

网友回答

C

解析分析:根据新定义,将f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,转化为函数y=x2-5x+4-m在[0,3]上有两个不同的零点即可.

解答:由题意,y=f(x)-g(x)=x2-3x+4-2x-m=x2-5x+4-m,则函数y=x2-5x+4-m在[0,3]上有两个不同的零点,令h(x)=x2-5x+4-m,则,∴,解得故选C.

点评:本题考查新定义,考查函数零点的研究,解题的关键是理解新定义,将问题进行等价转化.
以上问题属网友观点,不代表本站立场,仅供参考!