甲、乙、丙三人轮流投掷一枚质地均匀的正方体骰子,规则如下:如果某人某一次掷出1点,则下一次继续由此人掷,如果掷出其他点数,则另外两个人抓阄决定由谁来投掷,且第一次由甲

发布时间:2020-07-31 17:09:21

甲、乙、丙三人轮流投掷一枚质地均匀的正方体骰子,规则如下:如果某人某一次掷出1点,则下一次继续由此人掷,如果掷出其他点数,则另外两个人抓阄决定由谁来投掷,且第一次由甲投掷.设第n次由甲投掷的概率是pn,由乙或丙投掷的概率均为qn.
(1)计算p1,p2,p3的值;
(2)求数列{Pn}的通项公式;
(3)如果一次投掷中,由任何两个人投掷的概率之差的绝对值小于0.001,则称此次投掷是“机会接近均等”,那么从第几次投掷开始,机会接近均等?

网友回答

解:(1)由题意,…(5分)
(2)设第n-1次由甲投掷的概率是pn-1(n≥2),则
第n-1次由甲投掷而第n次仍由甲投掷的概率是,
第n-1次由另两人投掷而第n次由甲投掷的概率是,…(9分)
于是,
递推得.??…(12分)
(3)由,得,∴n≥6
故从第6次开始,机会接近均等.…(15分)

解析分析:(1)根据规则,可求p1,p2,p3的值;(2)设第n-1次由甲投掷的概率是pn-1(n≥2),则第n-1次由甲投掷而第n次仍由甲投掷的概率是,第n-1次由另两人投掷而第n次由甲投掷的概率是,…,由此可得通项公式;(3)由,结合(2)的结论,利用任何两个人投掷的概率之差的绝对值小于0.001,建立不等式,即可求得结论.

点评:本题考查概率知识的运用,考查数列通项的确定,考查学生分析解决问题的能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!