将圆周四等分,A是其中的一个分点,规定动点P在四个分点上按逆时针方向前进.现掷一个写有数字1,2,3,4的质地均匀的正四面体,动点P从点A出发,按照正四面体底面上所投

发布时间:2020-07-31 18:37:42

将圆周四等分,A是其中的一个分点,规定动点P在四个分点上按逆时针方向前进.现掷一个写有数字1,2,3,4的质地均匀的正四面体,动点P从点A出发,按照正四面体底面上所投掷的点数前进(数字为n就前进n步),动点P在转一周之前将继续投掷,转一周或超过一周则停止投掷.
(1)求点P恰好返回A点的概率;
(2)在动点P转一周恰好返回A点的所有结果中,用随机变量X来表示动点P返回A点时投掷正四面体的次数,求X的分布列和数学期望.

网友回答

解:(1)投掷一次正四面体,底面上每个数字的出现都是等可能的,概率为,则:
①若投掷一次能返回A点,则底面数字应为4,此时概率为P1=;
②若投掷两次能返回A点,则底面数字一次为(1,3),(3,1),(2,2)三种结果,其概率为P2=()2×3=;
③若投三次,则底面数字一次为(1,1,2),(1,2,1),(2,1,1)三种结果,其概率为P3=()3×3=;
④若投四次,则底面数字为(1,1,1,1),其概率为P4=()4=;
则能返回A点的概率为:P=P1+P2+P3+P4=;
(2)能返回A点的所有结果共有(1)中所列8种,则:
P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=
其分布列为:?X1?2?3?4?P????所以,期望E(X)==(次)
解析分析:(1)分类讨论,分别求出能返回A点的概率,即可得到结论;(2)求出X=1,2,3,4对应的概率,可得分布列与期望.

点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,考查学生的计算能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!