已知P是直线3x-4y+11=0上的动点,PA、PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形PACB面积的最小值为________.
网友回答
解析分析:由圆的方程为求得圆心C,半径r,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后将四边形转化为两个直角三角形面积求解.
解答:∵圆的方程为:(x-1)2+(y-1)2=1,∴圆心C(1,1),半径r=1.根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小.∵圆心到直线的距离为d==2∴PA=PB==.故四边形PACB面积的最小值为 2S△PAC=2××PA×r=,故