在△ABC中,角A,B,C的对边分别是a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,(1)求角C的值;(2)若a2+b2-6(a+

发布时间:2020-07-31 16:39:40

在△ABC中,角A,B,C的对边分别是a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,
(1)求角C的值;
(2)若a2+b2-6(a+b)+18=0,求△ABC的面积.

网友回答

解:(1)∵点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,
∴a(sinA-sinB)+bsinB=csinC,
由正弦定理,
得a(a-b)+b2=c2,即a2+b2-c2=ab.(3分)
由余弦定理得cosC==,
又∵∠C∈(0,π),∴.(6分)
(2)∵a2+b2-6(a+b)+18=0,
∴(a-3)2+(b-3)2=0,解得a=b=3.(9分)
所以△ABC的面积S===.(12分)

解析分析:(1)由题设知a(sinA-sinB)+bsinB=csinC,由正弦定理得a2+b2-c2=ab.由余弦定理得cosC==,由此能求出角C的值.(2)由a2+b2-6(a+b)+18=0,解得a=b=3.再由正弦定理能求出△ABC的面积.

点评:本题考查三角形的内角的求法,考查三角形面积的求法,解题时要认真审题,注意正弦定理、余弦定理的合理运用.
以上问题属网友观点,不代表本站立场,仅供参考!