已知函数f(x)=e-x(cosx+sinx),将满足f'(x)=0的所有正数x从小到大排成数列{xn}.
(Ⅰ)证明数列{f{xn}}为等比数列;
(Ⅱ)记Sn是数列{xnf{xn}}的前n项和,求.
网友回答
解:(Ⅰ)证明:f'(x)=-e-x(cosx+sinx)+e-x(-sinx+cosx)=-2e-xsinx.
由f'(x)=0,得-2e-xsinx=0.
解出x=nπ,n为整数,从而xn=nπ,n=1,2,3,f(xn)=(-1)ne-nπ..
所以数列{f{xn}}是公比q=-e-π的等比数列,且首项f(x1)=q.
(Ⅱ)解:Sn=x1f(x1)+x2f(x2)++xnf(xn)=πq(1+2q++nqn-1),
qSn=πq(q+2q2++nqn),
Sn-qSn=πq(1+2q2++qn-1-nqn)
=,
从而
=
=
=.
因为,
所以.
解析分析:(1)先求导数,解出f'(x)=0的所有正数解x,求得数列{xn}.从而可证明数列{f{xn}}为等比数列.(2)利用错位相减法求得Sn,从而求得,进而得解.
点评:本小题主要考查.函数求导,等比数列证明,错位相减的求和方法,及极限的求解等知识.是对知识的综合性考查,能力要求较高.